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THE LONGITUDINAL-TRANSVERSE SPATIAL COHERENCE FUNCTION

FOR A SPHERICAL WAVE PROPAGATING THROUGH HOMOGENEOUS 

ATMOSPHERIC TURBULENCE: IMPLICATIONS FOR RASS

Richard J. Lataitis

ABSTRACT

The parabolic wave equation and the Bourret approximation are used to 

derive an expression for the second-order spatial coherence function of a 

spherical wave propagating through homogeneous atmospheric turbulence.

Both the longitudinal and transverse coherence of the wave field are consid­

ered. In contrast with existing plane-wave results, the spherical-wave coher­

ence normalized by its value in the absence of inhomogeneities depends not 

only on the transverse separation of the observation points but also on their 

mean transverse position. This inhomogeneity of the normalized second-order 

statistics disappears as the longitudinal separation between the observation 

planes tends to zero. The normalized coherence for a spherical wave can be 

expressed as the exponential of a complex factor, as in the plane wave case.

The imaginary component of the exponent describes the turbulence induced 

excess phase-path difference between the two observation planes. The modulus 

of the normalized coherence can be used to estimate the longitudinal and 

transverse coherence lengths p, and pf , respectively. The longitudinal 

spherical-wave coherence length is found to be essentially identical to the



plane-wave result. For uniform isotropic turbulence described by a von 

Klrm£n-type refractive index spectrum, it can be approximated by

Pi - Pi P2l(Pi+ Pi) ’ where Pi = (182 x 10~1 2 k2 Lf Cy, p2 = (0.632 k™ L C2 *)^5,

k = 2n/X, X is the wavelength, C2n is the refractive index structure parame­

ter, L is the propagation pathlength, and La is the turbulence outer scale. The 

transverse coherence length for a spherical wave is given by the well-known 

result pt = (0.546it2 LC2) 3/5. For a nonuniform distribution of turbulence 

strength along the propagation path, C2 in p; corresponds to a local value at 

a path position z = L; C2 in p2 represents a uniformly-weighted, path- 

integrated value; and C2 in pt corresponds to a path-integrated value with a 

z573 weighting. For typical profiles of acoustic C2n with height, the echo 

power associated with the radio acoustic sounding of temperature does not 

appear to be significantly affected by the reduction in longitudinal coherence of 

the acoustic wave.

1. INTRODUCTION

In the radio-acoustic sounding of temperature, a pulsed Doppler radar can be used to

infer the speed of a vertically propagating acoustic wave, from which the virtual temperature

at a given altitude can be obtained (e.g., May et al., 1990). Atmospheric turbulence distorts 

the acoustic wave, which can have a significant impact on the returned power. In theories 

describing the operation of a radio-acoustic sounding system (RASS), the effects of turbulence

are usually described in terms of the second-order spatial coherence function (i.e. the second
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moment) of the acoustic field at the range of interest (Nalbandyan, 1976, 1977; Clifford and 

Wang, 1977, 1978; Clifford et al., 1978; Kon, 1984a,b). In the most general case this 

function describes both the longitudinal and transverse degradation of the acoustic wave, 

which are characterized in terms of a longitudinal and transverse coherence lengths pt and 

pt, respectively. In general, the relative size of pt to the range resolution A, and pt to 

the width W of the radar beam, at the range of interest determines the extent to which the 

returned power is affected by turbulence.

Many formulations for the transverse coherence function exist (e.g., Tatarskii, 1971) 

and the form for the transverse coherence length pt is well known. Only two formulations, 

however, exist for the full second-order longitudinal-transverse coherence function. The 

earliest was due to Klyatskin (1970), who expressed his result as a convolution involving the 

transverse coherence function at a single range. The functional form of the transverse 

coherence function is such that this convolution is impossible to evaluate analytically, making 

it difficult to estimate p(. The second formulation is due to Nalbandyan and Tatarskii 

(1977) who, using a different approach, arrived at a relatively simple expression for the full 

coherence function, from which they were able to obtain a reasonable estimate for p(. It 

was their expression for the second-order coherence function that was used in earlier 

investigations of the effects of turbulence on a RASS.

There are two potential difficulties with applying the results of Nalbandyan and 

Tatarskii (1977) to the RASS problem. The first is that their formulation is limited to plane 

waves, whereas the acoustic wave in most RASS configurations approximates a spherical 

wave. The second is their assumption of a uniform distribution of turbulence strength along
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the propagation path. This is particularly inappropriate for vertical sounding of temperature 

because the turbulence strength is known to decrease dramatically with height, especially 

above the boundary layer. For this situation it is critical to know how the contributions from 

turbulence at different heights are weighted in the final expression for the coherence lengths.

Consider, for example, the expression for pi implied in the result of Nalbandyan and 

Tatarskii (1977), that is, p, = (0.632 k1/6LC^y615 , where, for the RASS problem, 

k = 2ir/A is the acoustic wavenumber, X the corresponding wavelength, L the sounding 

range, and C2 the acoustic refractive index structure parameter. If we assume that the 

turbulence is uniform (i.e. C2 is constant with height), we need to decide on an appropriate 

value of C2. Brown and Clifford [1976, Eq. (17)] present a typical acoustic C2 profile for 

convective midday conditions. If we choose C2 = 5.7 x 10 6 m 2/3 , which is characteristic of 

conditions roughly 2m above the surface, and use X = 37.5 cm (corresponding to a radar 

frequency of 400 MHz) and L = 1 km, we obtain p/ » 17m. On the other hand if we 

choose C2 = 3.8 x 10~7 m_2/3 , which is more representative of values in the upper boundary 

layer at heights of approximately 1 km, we obtain pt » 430 m . Assuming that the range 

resolution A * 150 m, it is clear that any conclusion regarding the impact of the turbulence- 

induced longitudinal degradation of the acoustic wave on the echo power depends critically 

on the choice of C2. A more careful examination of the development of Nalbandyan and 

Tatarskii (1977) indicates that C2 in their expression for p; represents a uniformly 

weighted path-integrated value. Using the same parameters as above, and the C2 profile 

presented by Brown and Clifford (1976), we obtain pz « 370 m > A, indicating that, for this 

example, the reduction in the longitudinal coherence of the acoustic wave has little effect on

4



the RASS echo power. The corresponding path weighting function for a spherical wave is 

not easy to glean from the work of Nalbandyan and Tatarskii (1977), although physical 

reasoning suggests that it is also uniform.

In this report we extend the plane wave formulation for the longitudinal-transverse 

coherence function presented by Nalbandyan and Tatarskii (1977) to include spherical waves. 

Particular emphasis is placed on determining the appropriate path-weighting of Cn2 in the 

expression for p{. The development is based on the scalar parabolic approximation to 

Maxwell’s equations, and is therefore appropriate only for electromagnetic waves in the 

quasi-optical limit. We note, however, that results derived from this starting point are often a 

good approximation to those based on the corresponding hydrodynamic equations describing 

the propagation of acoustic waves through a turbulent medium, provided the appropriate form 

of the refractive index spectruin is used in the final result (Clifford and Brown, 1970; 

Tatarskii, 1971). We therefore assume that the form of the coherence function obtained by 

this approach is valid not only for electromagnetic waves, but is reasonably accurate for 

acoustic waves as well.

2. THEORY

We want to obtain an expression for the second-order spherical-wave coherence 

function

Aa*a) = i) U\p2,zj) , (!)
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where U(pt, z,) describes the field at a range z, and transverse position pt, and the angle 

brackets identify an ensemble average. Using the scalar parabolic approximation for the 

wave equation and the Bourret approximation (Bourret, 1962), we follow the development of 

Nalbandyan and Tatarskii (1977) to obtain the following result for the governing integro- 

differential equation of the coherence function r2:

dr2ik —? + 2 % -V,r2 + 2k?(6nY2) = 0, 
oz H

(2a)

where r2=r2(/f, p'=p)-/f2, £ = zl-z2, £ = (/?, + p2)/2, z = (Zl +Zj)/2,

6n = nC^.z,)

(2b)

y2 = y2 (p. f.^.z) ,

(d/j y2) = ik f dz'f <??$G{p-0',R-&!,z-z')
(P-

x(dn ((?,(, R',z') 6n (p, (, R,z)) T2(pv, R'a'),

(2c)

and G is the Green’s function for (2a) defined by

G(p,R,z) =
4jt2z2

exp (ikp-M/z) (2d)

The parabolic approximation used in deriving (2) requires that several conditons be 

satisfied. These were discussed by Tatarskii (1971) and summarized by Strohbehn (1978).
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The most fundamental is that the propagation wavelength be sufficiently short so that the 

scattering is confined to a narrow angle about the propagation direction (i.e. X«la , 

where / is the inner scale of turbulence). In addition, use of the Bourret approximation 

requires that (k Lc on)2 < < 1, where Lc is the correlation radius of the refractive index 

fluctuations and a 2 is the variance of the refractive index fluctuations about a mean value
ft

of unity (Rytov et al., 1989). This restriction can be rewritten by using the approximate 

relations Lc ~ L0 and a2 « C2L2J3 (Strohbehn, 1978), which yields fc2L*'3Cn2<<l.

To evaluate (2a) we assume that the function r2 in (2c) is sufficiently smooth relative 

to the other terms in the integrand that it can be evaluated at the coordinates p' = p, ft' = ft, 

and z' = z and factored out of the integral. In this limit we obtain the following expression 

for the governing differential equation:

— -- %-Var2 + k?Hr2 = o,dz k * 2 2
(3a)

where

H = H(p, {,R,z) = f dz'[d2#G(p-fT',R-n',z-z') 

e/2
X {Snip', Snip, (,R,z)) •

(3b)

Nalbandyan and Tatarskii (1977) suggest that this is a valid procedure provided
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0.5 k116 L^'6 Cn2<< 1, that is provided the intensity fluctuations of a wave propagating a 

distance on the order of the outer-scale are small. Equation (3b) has been evaluated in the 

Appendix. The result is given by

H(i>,Z,z)»2n$#K*n{K,z) Kp+K: (4)

where z) is the three-dimensional refractive index spectrum evaluated at the transverse

wavenumber R and mean path position z. The integrals in (3b) were evaluated by using the 

Markov approximation, that is, by assuming the fluctuations in the refractive index were 

8-correlated in the direction of propagation. The impact of this assumption on the solution 

for the second-order coherence function was evaluated by Tatarskii (1971) and was summa­

rized by Strohbehn (1978). We note only that use of the Markov approximation in the 

calculation of the second-order coherence is generally valid provided X « pt,l0.

We will solve (3a) subject to the boundary condition

= iuurJt()W(jra, 0)> 

= u\p2,0)(u(pro)
(*-£o) (</(*♦£,)}

(5)

suggested by Nalbandyan and Tatarskii (1977). Since the function H defined in (4) is 

independent of R, (3 a) can be solved in a manner analogous to that used by Tatarskii (1971) 

to evaluate the transverse second-order coherence. He obtained his solution by substituting 

for r2 its Fourier integral representation with respect to R , and solving the resulting
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equation for the Fourier transform of r2 using the method of characteristics. An inverse 

transform was then applied to obtain the final result. The details of this method are straight­

forward and will not be repeated here. (An alternative approach is described by Rytov et al., 

1989). The solution to (3a) is given by

= — Jd2#'f<?K o (u \
47T2 v 2 2k / \ V. 2 2k ) j

x exp j *£•(£-£') j dz'H k

(6)

where we have set z-L. Assuming a spherical wave field of the form

U(PJ) = — exp [ik p2l(2z)],
z

we have

U
2k

!\ Ao \
1 ik)l t \[

+ l 2)
2 2k

/(2t) (7a)

where F is the mean field <U> normalized by its value Ua in the absence of fluctuations. In 

the limit of the Markov approximation, F(<f) can be expressed as (Tatarskii, 1969)

F({) * exp { - *k2 dz'fd2K <Pn(K*') } . (7b)

The integration over R! in (6) can be evaluated by assuming the following Gaussian 

form for the source field given by l/(p,0) = exp {- [p2/(2a2)]}, where a is the effective radius
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of the transmitting aperture, and taking the limit as a tends to zero, which yields a delta 

function in R' . Noting that the Huygens-Fresnel integral (Goodman, 1968) gives 

A. = -ika2, we have
O

r2(p,$M,L) = K
2 nik(

TO exp
kP2 kgn-pL/o
U 2 (L2 - f2/4)

x J SK exp
(L2-m\g. WR-pL/oJ 

2k f L2 - f2/4

L

xexp' -k? f dz'H
f/2

p'- y (L-z')» 
k

(8)

where I0 = \A012. The second term in the integrand of (8) has the form of a coherence 

function. The transverse scale of this term is given approximately by the transverse coher­

ence length pt. If we require that pt»\[TZ, the first exponential within the integrand is 

much narrower than the second, effectively sampling the second exponential at the wavenum­

ber it = it0 = -k{(&- pLI£)/(Lz - <f2/4). Therefore, in this limit, the integration over K can be 

evaluated by replacing it in the second exponential by it0, removing it from the integrand 

and evaluating the remaining integral. Noting that the vacuum coherence

r(p,{Jij.) =
*1*2

exp
4(P'2/Z1 _P22/Z*)

= /*, exp[2Lp R- (f(R2 -p2/4)]/(L2 - 4)
L2-?I4 1 2

(9)

we have for the normalized coherence Af2 = r2/ro
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M2(p,(Ji,L) = F(£) exp -k2f dz' H\p \_(L-z)L
J(12 l L2-{2/4_ L2-(2I4 J

L
/

«F(f)exp’ -k2f dz'H
O

[ L 1--
L)

I ,e,z' •
JL

(10)

In (10) we have replaced £ by 0 in the lower limit of the integration and excluded terms of 

order (<f/L)2 in the argument of H, which introduces a negligible error provided {«L.

We note that (10) has essentially the same form as the plane wave result of Nalbandyan 

and Tatarskii (1977), which can be recovered by setting z'/L = l . It is the product of two 

terms. The first term, F(£), describes the decay of the mean field in propagating from one 

observation plane to the other, which depends only on the local value of C2n . The second 

term describes the contribution to the coherence from the entire propagation path. It is easy 

to show that the transverse argument of the function H in (10) is simply the difference 

between the transverse vectors in the planes at z' - <f/2 and z' + <f/2 locating the two rays 

connecting the source to the observation points at L- f/2 and L + £/2 . For a plane wave 

source these two rays are parallel and have a constant separation p. For a spherical wave we 

obtain the more complicated dependence shown in (10).

3. DISCUSSION

Equations (4), (7b) and (10) describe the longitudinal-transverse, spherical-wave, 

spatial coherence function for an arbitrary refractive index spectrum <$n(K,z) . The explicit
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dependence of the spectrum on the path position z allows for a nonuniform distribution of 

turbulence strength along the propagation path. We can simplify the result somewhat by 

writing the function H in (4) as the sum of the following two terms;

H{p, (,z) = 2TrftfK <Pn(K,z) {1 -exp[ -»K2 (/(2k)]}

+ 2n JcPit *n(K, z)exp[-i K2 (1(2k)] [1 -exp(-iKp)],

(ID

Consider the second term of this expression. If we assume that the spectrum $n(K, z) has 

an inner-scale cutoff described by exp{-K2IK2m) , where Km=5.92/l0, the exponential term 

within the integrand containing ( can be considered as part of the spectrum if we define an 

effective inner-scale - {l20 + i 17.5 (Ik}'12 as suggested by Nalbandyan and Tatarskii (1977).

If we require that P>>leff this inner-scale dependence can be ignored. In this limit the first 

term in (11) depends only on ( and the second only on p. If in addition we assume p«Lc 

and l0« \pi(«L0 , the Kolmogorov spectrum

*n(it,z)= 0.033 cfo)K-n/3

can be used in (11) to obtain

H(p, (, z) = 2.44 C2n(z) k'5l6(i 0s'6 + 1.46 C*(z) p5/3. (12

Substituting this result into (10) and assuming a uniform distribution of turbulence along the 

propagation path gives
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M2(p,{,L) = F(0 exp[ -(0.632F6 L C2n

+ i 2.36k116L cl ?/6 + 0.546*2 L c\ p5/})\.

(13)

We now need to evaluate the function F(£) defined in (7b). Since this function 

clearly depends on the turbulence outer-scale La we will use the following uniform spectral 

form of the von Kirm&i type (Tatarskii, 1961);

0.033 Cl
*(K) - (K1 »*£)"*’

where K0 = 2n/L0 . Writing (7b) in the more recognizable form

F(0= exp (An(0) (14a)

where

^„(0) = 2n f d2K $n(K) = an2 Lr (14b)

o2 = C2J( 1.91 K0V3) and Lt = 0.237 L0 is the corresponding integral scale, we have

F(£) = exp (-0.0182 k2 La5/3 c\ O (14c)

The combination of (13) and (14c) finally yields
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Af2(p,£L) = exp- (15)\516
Pi [P2 + l

\5/6

3.73 p2)

V5/3

\P*}

Pl = (1.82 x 10'2 k2 if C2)'1, p2 = (0.632 Jfc7/6 I C2)^4 5, and p( = (0.546 k2 L C2)'3/5 . The 

longitudinal component of the normalized coherence defined in (1) is identical to the plane 

wave result obtained by Nalbandyan and Tatarskii (1977). Note that if we change the 5/6 

power law of the second factor in (1) to 1, the longitudinal coherence length pt , which can 

be estimated from the modulus of M2, can be approximated by p, ® p1p2l(p1 + p2) . For 

a nonuniform distribution of turbulence strength along the propagation path, C2 in p; 

corresponds to the local value at a path position z ® L , C2 in p2 represents a uniformly 

weighted path-integrated value, and C2 in pf corresponds to a path-integrated value with a 

z5^ path weighting.

4. CONCLUSIONS

We have derived an expression for the longitudinal-transverse, second-order, spatial 

coherence function for a spherical wave propagating through homogeneous turbulence. Our 

development parallels that of Nalbandyan and Tatarskii (1977), who considered the same 

problem for plane waves, and is general enough to allow for a nonuniform distribution of 

turbulence along the propagation path. Our results indicate that the longitudinal coherence 

length for a spherical wave is identical to that for a plane wave. We also find that the path­

weighting of turbulence strength for the longitudinal coherence length is the same for both
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plane and spherical waves, consisting of a uniformly weighted local component about the 

range of interest and a uniformly weighted path-integrated component.

Earlier calculations of the longitudinal coherence length with implications for RASS 

assumed uniform turbulence and used exceedingly small acoustic Cn2 values. This proce­

dure yielded long coherence lengths and led to the conclusion that the RASS echo power was 

not significantly affected by the degradation of the longitudinal coherence of the acoustic 

wave. We have reached the same conclusion using more appropriate values of CB2 and 

including its variability with height.
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APPENDIX

We will evaluate (3b) using the assumption of <5 -correlated refractive index fluctua­

tions along the propagation path for which

(<5n(p/, ( Jlj.) Sn(p, (jRz)) = 6{z-z')An *-# + %&-faz + ff. 2

+ 6(z-z')An 

-db-z' + OA, 

-6{z-z'-0An

R-R'-±(p-p)-,z-t/2

R-R' + ^(p+p);z + £/2 

R-R' + ±(p + p);z-{/2

(Al)

where 6 is the Dirac delta function,

An(p„, za)=2nf #K <P„(£zj exp(iK • pj, (A:

and <Pn(X, za) is the three-dimensional refractive index spectmm evaluated at the transverse 

wavenumber R and mean path position za. Substitution of (Al) into (3b) yields a sum of 

four terms, which we denote each by Iv /2, /3, and I4, respectively. The delta function 

associated with the first two terms in (Al) makes the evaluation of Ix and I2 trivial. We 

find that

Ix +I2 = Z + f/2) + An{0; z - (12) ]/2 - A„(0; z) ,

provided the strength of the refractive index fluctuations does not change significantly over 

the distance <f.

Evaluation of /3 and /4 is slightly more difficult. In our development we defined ( 

as the separation between the observation planes, which is always positive. Technically, <f
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can be either positive or negative, although the distinction has not been important so far. If 

we assume that <f can be either positive or negative but small compared to z, then the delta 

functions in the expressions for /3 and /4 are such that when £ >0, /3 = 0 , and when 

<f <0, /4 = 0. We note, however, that the sum /3 + /4 does not depend on the sign of £ . 

We therefore consider only £ > 0 for which /3 = 0, and

/dV/d^'explW-p") '{&-&')!£]

j(p*+p*') ;z ,

(A3)

where we replaced z - £/2 in the argument for A„ by z. Using (A2) in this expression yields

I4 = 2nj(fk *n{K, z) exp [ — (K ’ p* + K2 £/2k)], (A5)

which leads directly to (4) in the text.
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